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Introduction

Introduction

One subject we skipped over in our discussion of iteration is how the model matrix
function M(θ) is produced in an efficient way.
We’ve already seen how one might construct such a general function “constructor” in the
simple case of confirmatory factor analysis.
One has a list of the elements of θ, and a list of where they are located in the matrices
Λ, Φ (if the factors are correlated), and Θδ. One then simply constructs
M(θ) = ΛΦΛ′ + Θδ.
But what about more general cases?
The model has to be manageable, and at the same time have enough generality to be
useful across a wide range of circumstances.
A key factor in early days of mainframe computing was whether derivatives of the model
function could be calculated efficiently along with the model function itself.
A misspecified and/or large model could easily exhaust an entire departmental computer
budget estimating one model!
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The LISREL Model

The LISREL Model

Consider the structural equation model shown on the next slide.
This, model, known as the “Wheaton model” after the author of the article in which it
appeared, is an example of the classic “LInear Structural RELations Model” (LISREL
model) often attributed to Karl Jöreskog, the developer of LISREL, the earliest and
best-known general purpose structural equation modeling program.
Note how the model sandwiches a linear regression model (on latent variables) between
two confirmatory factor analysis models.

James H. Steiger (Vanderbilt University) General Models for Covariance Structures 4 / 28



The LISREL Model

The LISREL Model

11. STRUCTURAL MODELING - INTRODUCTORY EXAMPLES

SEPATH - 3564

Copyright © StatSoft, 1995

Example number 1 in the Electronic Manual, and
print the topic from the Help facility.)

Remember, any arrow without any numerical index
attached is assumed to have a fixed coefficient of 1.
Such arrows may be given in the PATH1 language in
a simplified form - for example, the arrow from
EPSILON1 to ANOMIA67 is denoted as follows:

(EPSILON1)-->[ANOMIA67]

EPSILON1 EPSILON2 EPSILON3 EPSILON4
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Before setting up this rather imposing looking
model, try to “chop it down to size”  conceptually.
Like many structural equation models, this one can
be conceptualized, according to the classic LISREL
model of Karl Jöreskog, as being composed of three
smaller models, two of them common factor models
commonly referred to as “measurement models,”
and one a multiple regression model called the
“structural model.”

The basic goal of the study is to examine the
regression relationships between socioeconomic
status (SES) and personal alienation (AL), measured

at two time points (1967) and (1971).  As is
frequently the case with social science data, the
observed variables used to infer socioeconomic
status and alienation have varying degrees of
reliability of measurement.  Hence correlations
among the observed variables are attenuated by
unreliability, and regression relationships among
them may as a consequence be misleading.

To combat these problems, LISREL models
postulate regression relationships among latent
variables that, as common factors of the observed
variables, have error of measurement “partialled
out.”  There are two measurement models, one a
factor model for the exogenous latent variables, one
a factor model for the endogenous latent variables.

In this case, the two measurement models are at the
top and bottom of the path diagram, the structural
model is in the center.  At the bottom of the diagram,
you can see a factor model with two manifest
variables, EDUCATN and SEINDEX, and common
factor SES.

SES

EDUCATN SEINDEX

DELTA1 DELTA2

21

3 4

At the top of the diagram, there is a two factor
model shown below, with common factors AL67 and
AL71 loading on variables ANOMIA67, POWLES67,
ANOMIA71, and POWLES71.
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The LISREL Model

The LISREL Model

The LISREL model breaks the larger model down into these 3 pieces.
Perhaps the key equation is the structural equation model, which relates latent variables.

η = Bη + Γξ + ζ (1)

The endogenous, or dependent latent variables are collected in the vector η, while the
exogenous, or ”independent” latent variables are in ξ.
B and Γ are coefficient matrices, while ζ is a random vector of residuals, sometimes
called “errors in equations” or “disturbance terms.”
The elements of B and Γ represent path coefficients for directed relationships among
latent variables. It is assumed in general that ζ and ξ are uncorrelated, and that I− B is
of full rank.
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The LISREL Model

The LISREL Model

Because usually η and ξ are not observed without error, there are also factor model (or
“measurement model”) equations to account for measurement of these latent variables
through manifest variables. The “measurement models” for the two sets of latent
variables are

y = Λyη + ε (2)

and
x = Λxξ + δ (3)

with the standard factor analytic assumptions.
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The LISREL Model

The LISREL Model

We can partition Σ as

Σ =

[
Σyy Σyx

Σxy Σxx

]
(4)

You can verify that
Σyy = ΛyA

(
ΓΦΓ′ + Ψ

)
A′Λy

′ + Θε (5)

Σxx = ΛxΦΛ′x + Θδ (6)

Σxy = ΛxΦΓ′A′Λy
′ (7)

Φ,Ψ,Θε, and Θδ are the covariance matrices for ξ, ζ, ε, and δ respectively.

with A = (I− B)−1.
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The LISREL Model

The LISREL Model

Setting up a model in LISREL involved defining each model matrix separately and
“telling” the program which elements of each matrix were free parameters or fixed values
(often zero).
Despite the substantial difficulty of learning to use the program, and the fact that some
models were not directly specifiable in the LISREL syntax, the program became very
popular.
Those who mastered the program achieved special status, and became known as
LISRELites.
A typical structural equation modeling course spent about a month mastering the LISREL
syntax, and usually terminated after, with great fanfare, students managed to execute a
couple of really simple models.
To give you some idea of what was involved, let’s determine the model matrices for the
Wheaton model. Executing the model on LISREL would involve an additional step of
mastering the model syntax and using it to specify the matrices.
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The Wheaton Model

The Wheaton Model

But before we begin, let me ask you a question: Why do ANOMIA67 and ANOMIA71 each
have a fixed factor loading of 1?
Let’s invoke the “pipeline metaphor.”
Imagine that, instead of a fixed value of 1, there is a free parameter on the path from
AL67 to ANOMIA67, and that you are a little person standing between ANOMIA67 and
POWLES67, observing the “flow” of numbers arriving at those two boxes.
Now imagine that I were to suddenly double every number arriving at AL67 from SES and
ZETA1. What effect would that have on the standard deviation of AL67?
Could I adjust the path coefficients so that the numbers arriving at ANOMIA67 and
POWLES67 are the same as they were before? How?
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The Wheaton Model

The Wheaton Model

The fixed value of 1 is required to identify the model coefficients.
I (Steiger, 2002) call the fixed value of 1 a “unit loading identification constraint.”
Some authors of SEM textbooks state that such a loading “fixes the scale” of the latent
variable at that of the manifest “indicator.”
Certainly fixing the loading at 1 fixes the variance of the latent variable, but exactly what
it fixes it to is something of an accident.
Suppose now that one has a fixed loading of 1. What would happen in the diagram if you
changed it to 3?
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The Wheaton Model Classic LISREL Specification for the Wheaton Model

The Wheaton Model
Classic LISREL Specification for the Wheaton Model

Below is the standard LISREL input to analyze the Wheaton model.

Stability of Alienation, Model B (Uncorrelated Errors)

DA NI=6 NO=932

LA

ANOMIA67 POWLES67 ANOMIA71 POWLES71 EDUCATN SEINDEX

CM FI=EX64.COV

MO NY=4 NX=2 NE=2 NK=1 BE=SD TE=SY

LE

ALIEN67 ALIEN71

LK

SES

FR LY(2,1) LY(4,2) LX(2,1)

VA 1 LY(1,1) LY(3,2) LX(1,1)

PD

OU
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The Wheaton Model SIMPLIS Specification for the Wheaton Model

The Wheaton Model
SIMPLIS Specification for the Wheaton Model

The LISREL model was needlessly complex as well as being conceptually more unwieldy
and less flexible than other models.
Each manifest variable had to be typed as either “endogenous” or “exogenous” depending
on whether the latent variables loading on it were endogenous or exogenous.
Variables had to be ordered in the correlation matrix according to their status.
Unfortunately, changing a model might change the status of a variable and require
substantial work reordering variables and revising the model specification.
When McArdle introduced the RAM model specification, quickly followed by the EQS
(Bentler-Weeks) and EzPATH models, LISREL responded by introducing a simplified
command language called SIMPLIS.
The next slide shows how the Wheaton model is specified with SIMPLIS.
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The Wheaton Model SIMPLIS Specification for the Wheaton Model

The Wheaton Model
SIMPLIS Specification for the Wheaton Model

Stability of Alienation

Observed Variables

ANOMIA67 POWLES67 ANOMIA71 POWLES71 EDUCATN SEINDEX

Covariance Matrix

11.834

6.947 9.364

6.819 5.091 12.532

4.783 5.028 7.495 9.986

-3.839 -3.889 -3.841 -3.625 9.610

-2.190 -1.883 -2.175 -1.878 3.552 4.503

Sample Size 932

Latent Variables Al67 AL71 SES

Relationships

ANOMIA67 POWLES67 = AL67

ANOMIA71 POWLES71 = AL71

EDUC SEI = SES

AL67 = SES

AL71 = AL67 SES

Path Diagram

End of Problem
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MPlus Specification of the Wheaton Model

MPlus Specification of the Wheaton Model

Mplus uses a command language that is fairly efficient but highly specified.
The next slide shows Mplus input for the Wheaton model.
The key model specification constructs in Mplus are BY (for specifying loadings), ON (for
specifying regression relationships), and WITH (for specifying covariances).
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MPlus Specification of the Wheaton Model

MPlus Specification of the Wheaton Model

TITLE: Wheaton Model

DATA: FILE IS WheatonCov.dat;

TYPE IS COVARIANCE;

NOBSERVATIONS = 932;

VARIABLE: NAMES ARE ANOMIA67 POWLES67 ANOMIA71 POWLES71 EDUCATN SEINDEX;

MODEL: AL67 BY ANOMIA67 POWLES67;

AL71 BY ANOMIA71 POWLES71;

SES BY EDUCATN SEINDEX;

AL71 ON SES AL67;

AL67 ON SES;
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McArdle’s RAM Model

McArdle’s RAM Model

Around 1978, J. J. McArdle proposed his Reticular Action Model (RAM) system for
structural equation modeling.
Although it presented some computational difficulties for larger models, the RAM system
was so conceptually straightforward that it caused researchers to examine the LISREL
model in a much more critical light.
This examination led to alternative models that allowed for much more flexible
specification and estimation.
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McArdle’s RAM Model

McArdle’s RAM Model

Around the same time, McDonald and Fraser had proposed the COSAN model.
Let Σ be a population variance-covariance matrix for a set of manifest variables.
The COSAN model (McDonald, 1978) holds if Σ may be expressed as

Σ = F1F2 . . .FkPFk
′ . . .F2

′F1
′

where P is symmetric and Gramian, and any of the elements of any F matrix or P may be
constrained under the model to be a function of the others, or to be specified numerical
values.
As a powerful additional option, any square F matrix may be specified to be the inverse of
a patterned matrix. This “patterned inverse” option is critical for applications to path
analysis.
A COSAN model with k F matrices is referred to as “a COSAN model of order k .”
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McArdle’s RAM Model

McArdle’s RAM Model

Suppose you have a path diagram that is complete.
Let v be a (p + n)× 1 random vector of p manifest variables and n latent variables in the
path model, possibly partitioned into manifest and latent variables subsets in m and l,
respectively, in which case

v =

[
m
l

]
(8)
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McArdle’s RAM Model

McArdle’s RAM Model

For simplicity assume all variables have zero means.
Let F be a matrix of multiple regression weights for predicting each variable in v from the
p + n − 1 other variables in v.
F will have all diagonal elements equal to zero. In general, some elements of F may be
constrained by hypothesis to be equal to each other, or to specified numerical values
(often zero).
Let r be a vector of latent exogenous variables, including residuals. The path model may
then be written

v = Fv + r (9)
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McArdle’s RAM Model

McArdle’s RAM Model

In path models, all endogenous variables are perfectly predicted through the arrows
leading to them.
Since endogenous variables are dependent variables in one or more linear equations, their
variances and covariances can be determined from the variances and covariances of the
variables with arrows pointing to them.
Ultimately, the variances and covariances of all endogenous variables are explained by a
knowledge of the linear equation set up and the variances and covariances of exogenous
variables in the system.
Consequently, elements of r corresponding to endogenous variables in v will be null.
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McArdle’s RAM Model

McArdle’s RAM Model

The matrix F contains the regression coefficients normally placed along the arrows in a
path diagram. The path coefficient from vj to vi is fi ,j . If a variable vi is exogenous, i.e.,
has no arrow pointing to it, then row i of F will be null, and ri = vi .
Hence, the non-null elements of the variance covariance matrix of r will be the
coefficients in the “undirected” relationships in the path diagram.
Define P = E (rr′), W = E (vv′), and Σ = E (mm′),
We can “filter” the manifest variables out of v with a filter matrix

J =
[
I 0

]
Since m = Jv, by the law of linear combinations, we have

Σ = E (mm′) = JE (vv′)J′ = JWJ′
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McArdle’s RAM Model

McArdle’s RAM Model

It is easy to show (C.P.) that

W = (I− F)−1P(I− F)−1′ (10)

and consequently
Σ = J(I− F)−1P(I− F)−1′J′ (11)
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McArdle’s RAM Model

McArdle’s RAM Model

This shows that any structural equation model expressible in a standard path diagram
may be expressed as a COSAN model of order 2, i.e.,

Σ = F1F2PF2′F1′

where
F1 = J =

[
I 0

]
and

F2 = (F− I)−1 = B−1

Since McDonald and Fraser already had in place the machinery to analyze any COSAN
model, the implications of this result were profound.
McArdle had developed an incredibly simple approach to analyzing a structural equation
model.
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McArdle’s RAM Model

McArdle’s RAM Model

McArdle’s rules:

1 For convenience, order the manifest variables in the vector m, and the latent variables in
the vector l. The path model is then tested as a COSAN model of order 2, in which

2

F1 =
[
I 0

]
where I is of order p × p and 0 is of order p × n.

3 F2 is the inverse of a square matrix B of directed relationships. B is constructed from the
path diagram as follows. Set all diagonal entries of B to −1. Examine the path diagram
for arrows. For each arrow pointing from vj to vi , record its path coefficient in position
bi ,j of matrix B.

4 P, a symmetric matrix, contains coefficients for undirected paths between variables vi and
vj recorded in positions Pi ,j and Pj ,i .
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McArdle’s RAM Model

McArdle’s RAM Model

McArdle’s system was easy to implement. One simply took a spreadsheet with all variable
names on both the marginal rows and columns, went through the path diagram, and
transcribed all the coefficients both fixed and free into the respective positions in B and P.
If a variable was eliminated from a model, one simply deleted the corresponding row and
column.
Unfortunately, the RAM model matrices got very large rather quickly.
The model was quickly modified when it was realized that any factor residual variable
could be removed from the list of variables, and its variances and covariances placed in P
(on the respective manifest variable) without changing the results.
This reduced the dimension of the model matrices. Further computational enhancements
were developed by Mels (1989) in his M.S. thesis.
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The User-Friendly Revolution

The User-Friendly Revolution

Around that time, Steiger proposed a simplified, character-based method for conveying
path diagrams, that led to the truly user-friendly program EzPATH, distributed by Systat.
With EzPath, the user specified a path model with a series of commands similar to a path
diagram. In the followup version of the program, called Sepath, the user could construct
a typical confirmatory factor or SEM model with a few clicks of a mouse.
The program now read the path diagram, figured out for itself which variables were
manifest, which were latent, which were exogenous, and which were endogenous.
EzPATH also featured an improved model that used much smaller matrices than RAM.
Within a short time, there were numerous structural equation modeling programs,
including AMOS, EQS, Mplus, RAMONA, Mx, sem, and, of course, LISREL.

James H. Steiger (Vanderbilt University) General Models for Covariance Structures 27 / 28



The User-Friendly Revolution

The User-Friendly Revolution

Now that a structural equation model could be specified and tested in minutes, rather
than hours, and on a user’s desktop rather than at the university mainframe center,
people began to notice things.
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